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Abstract 1.0 Theory

As fluid flows around a seabed object, the Seafloor object scour and burial models in use today are based on an empirical approach originally developed by
object-induced turbulence intensifies sediment Whitehouse [1] for scour around marine structures. Subsequent work by Trembanis et al. [2], Elmore et al. [3], Rennie
dynamics around and near the object as et al. [4], Friedrichs [5], Demir and Garcia [6] and others has led to parameterized community models for free objects
compared to the far field, which may enhance such as unexploded ordinance (UXO), that must be tuned to specific forcing regimes, object geometries and material
object scour at various points along the object as properties, and environmental conditions. These models continue to yield high uncertainties due to scarcity of data
well as its overall burial. Empirical models of across a vast multi-dimensional parameter space, as well as the intrinsic complexity of the problem, including the
object scour and burial based on far-field effects of object geometry and orientation to flow on scour and burial processes.

parameterizations  (e.g.  Shields  number)
currently need to be tuned to specific object

1.1 Turbulence Sourcing Function

We classify seabed objects into four types as shown below. We suggest the use of a “TKE
sourcing function (TSF),” such as the ratio of object volume to surface area, that maps
normalized object geometry to the potential for TKE production.

TSF = f(Cf, Af, Bf) 2)
e, P

Complexity factor ~ Asymmetry factor  Bulk factor
(e.g. nedges/nsides) (e.g. COM/h) (e.g. LoA/V)

Turbulent structures form near a sea bed object (Figure 1) at characteristic length scales governed by the size and shape Figure 1: Resonant turbulent structures that emerge depending on object shape,
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