BACHELOR OF SCIENCE DEGREE IN APPLIED PHYSICS

This constitutes the program of study for _____ ID# _____

It has been agreed to by the student and an appropriate faculty advisory committee. Any changes must be approved in writing by all members of the committee. The minimum physics and mathematics requirements for all B.S. degrees in Applied Physics programs are given below. The additional courses selected for this particular student's program are indicated on the next page. The Core Curriculum Check Sheet is to be used for Core Curriculum Requirements. The student will be given one copy of this agreement. A copy will be kept in the department files and will serve as the official copy. One semester prior to anticipated graduation, students should check with the Office of the Dean of Arts and Sciences to ensure that all graduation requirements will be satisfied.

0 - ----

Semester Hour Requirements for this Student's Program

Physics	Semester Hours	(Minimum is 32)
Mathematics	Semester Hours	(Minimum is 12)
Concentration	Semester Hours	(Minimum is 18)

Required Physics

		Semester	Grades
PHY 1103 (4 hours) and 1104 (4 hours) OR			
PHY 1150 (5 hours) and 1151 (5 hours)			
AND		<u>Semester</u>	Grade
PHY 2010 Intermediate Physics I PHY 2020 Intermediate Physics II PHY 2210 Physics Lab Techniques (S) PHY 3210 Modern Physics (F) PHY 4210 Methods Experimental Phy	(4 hours) (4 hours) (3 hours) (3 hours) (3 hours)		
Required Mathematics			
MAT 1110 Calculus I MAT 1120 Calculus II MAT 2130 Calculus III	(4 hours) (4 hours) (4 hours)		
Approval of Program of Study			
Student			Date
Committee Chair			Date
Committee Member			Date
Committee Member			Date
Department Chair			Date

APPLIED PHYSICS - ASTROPHYSICS CONCENTRATION

This constitutes the program of study for _____ ID# _____

The courses listed below fall into two categories. Those which are very strongly recommended are given in capital letters. The remaining courses are recommended to broaden the student's background and understanding of physics in general and the student's chosen concentration in particular.

PHYSICS

	<u>-</u>	1110100			
			X Indicates		
			Required	<u>Semester</u>	Grade
PHY 3001	ANALYTICAL METHODS (S)	3	(X grad sch)	Spring 201x	
PHY 3010	CLASSICAL MECHANICS (F)	3			
PHY 3020	EM FIELDS AND WAVES (S)	3			
PHY 3140	Environmental Physics (F)	3			
PHY 3211	MODERN PHYSICS II (S)	3			
PHY 3230	Thermal Physics (S)	3			
PHY 3500	Independent Study	1-4			
PHY 3520	Instructional Assistance	1			
PHY 3549	Math Methods in Physics	3			
PHY 3560	Undergraduate Research	2,4			
PHY 4020	COMPUTATIONAL METHODS (F)) 3			
PHY 4330	Digital Electronics (F)	3			
PHY 4730	Analog Systems (F)	3			
PHY 4620	OPTICS (F)	4			
PHY 4640	QUANTUM MECHANICS (S)	3			
PHY 4735	Microcontrollers (S)	3			

ASTRONOMY

AST 1001 AST 2001 AST 2001 AST 3002 AST 3002 AST 3100 AST 3200 AST 3500 AST 35xx AST 35xx	INTRODUCTORY ASTRONOMY I INTRODUCTORY ASTRONOMY I OBSERVATIONAL ASTRONOMY I TECH ASTRO PHOTOMETRY TECH ASTRO SPECTROSCOPY ASTROPHYSICS Astromechanics Undergraduate Research Binary and Variable Stars Planets and Exoplanets Astrobiology	4 3 3 3 3 1-3 2 3 3 3	X X X	
AST 35xx AST 35xx AST 35xx	Astrobiology Star Formation	3 3 3		

MATHEMATICS

MAT 3130	DIFFERENTIAL EQUATIONS	3
MAT 2240	INTRODUCTION TO LINEAR ALGEBRA	3
MAT 4310	Introduction to Numerical Methods	3

APPLIED PHYSICS - ASTROPHYSICS CONCENTRATION

Sample Course Schedule - Even Year Fall Start

The following is a *sample* schedule of courses for the astrophysics concentration applied physics major with the intent to go on to graduate school. It assumes that the student's background is such that they can start the math sequence with calculus.

First Year - Fall (E)	AST 1001	Solar System Astronomy	4 hours
	PHY 1150	Analytical Physics I	5 hours
	MAT 1110	Calculus I	4 hours
First Year - Spring (O)	AST 1002	Stellar Astronomy	4 hours
	PHY 1151	Analytical Physics II	5 hours
	MAT 1120	Calculus II	4 hours
Second Year - Fall (O)	PHY 2010	Intermediate Physics I	4 hours
	PHY 3210	Modern Physics	3 hours
	MAT 2130	Calculus III	4 hours
	AST 2001	Observational Astronomy I	3 hours
Second Year - Spring (E)	PHY 2020	Intermediate Physics II	4 hours
	MAT 3130	Differential Equations	3 hours
	AST 3001	Photometry Techniques	3 hours
	PHY 3001	Analytical Methods	3 hours
Third Year - Fall (E)	PHY 3010	Classical Mechanics	3 hours
	PHY 4020	Computational Methods	3 hours
Third Year - Spring (O)	PHY 2210	Intermediate Physics Lab	3 hours
	PHY 3020	EM Fields and Waves	3 hours
	<i>AST 3002</i>	Spectroscopy Techniques	<i>3 hours</i>
Fourth Year - Fall (O)	PHY 4210	Methods Experimental Physics	3 hours
	PHY 4620	Optics	4 hours
Fourth Year - Spring (E)	PHY 4640	Quantum Mechanics	3 hours
	AST 3100	Astrophysics	3 <i>hours</i>

The above schedule includes all the physics and math courses required for any applied physics major (**bold**) as well as courses for the astrophysics concentration (*italics*). Depending on the student's own level of preparation, it may be necessary to take additional preparatory courses in math or physics. It is important that the student begins the sequence of astronomy courses as soon as possible. Note that AST 3001, AST 3002 and AST 3100 are <u>offered every other year</u>. Additional astronomy, math, physics and computer sciences courses will improve the student's preparation for post-graduate studies. If the student intends to go into immediate employment then many of the upper level physics courses can be replaced by, among others, Digital Electronics, Analog Systems, Microcontrollers and Environmental Physics.

APPLIED PHYSICS - ASTROPHYSICS CONCENTRATION

Sample Course Schedule - Odd Year Fall Start

The following is a *sample* schedule of courses for the astrophysics concentration physics major. It assumes that the student's background is such that they can start the math sequence with calculus.

First Year - Fall (O)	AST 1001	Solar System Astronomy	4 hours
	PHY 1150	Analytical Physics I	5 hours
	MAT 1110	Calculus I	4 hours
First Year - Spring (E)	AST 1002	Stellar Astronomy	4 hours
	PHY 1151	Analytical Physics II	5 hours
	MAT 1120	Calculus II	4 hours
Second Year - Fall (E)	PHY 2010	Intermediate Physics I	4 hours
	PHY 3210	Modern Physics	3 hours
	MAT 2130	Calculus III	4 hours
	AST 2001	Observational Astronomy I	3 hours
Second Year - Spring (O)	PHY 2020 MAT 3130 AST 3002 PHY 3001	Intermediate Physics II Differential Equations Spectroscopy Techniques Analytical Methods	4 hours 3 hours 3 hours 3 hours 3 hours
Third Year - Fall (O)	PHY 3010	Classical Mechanics	3 hours
	PHY 4020	Computational Methods	3 hours
Third Year - Spring (E)	PHY 2210	Intermediate Physics Lab	3 hours
	PHY 3020	EM Fields and Waves	3 hours
	<i>AST 3001</i>	Photometry Techniques	3 hours
	<i>AST 3100</i>	Astrophysics	3 hours
Fourth Year - Fall (E)	PHY 4210	Methods Experimental Physics	3 hours
	PHY 4620	Optics	4 hours
Fourth Year - Spring (O)	PHY 4640	Quantum Mechanics	3 hours

The above schedule includes all the physics and math courses required for any applied physics major (**bold**) as well as courses for the astrophysics concentration (*italics*). Depending on the student's own level of preparation, it may be necessary to take additional preparatory courses in math or physics. It is important that the student begins the sequence of astronomy courses as soon as possible. Note that AST 3001, AST 3002 and AST 3100 are <u>offered every other year</u>. Additional astronomy, math, physics and computer sciences courses will improve the student's preparation for post-graduate studies. If the student intends to go into immediate employment then many of the upper level physics courses can be replaced by, among others, Digital Electronics, Analog Systems, Microcontrollers and Environmental Physics.